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NUMERICAL SOLUTION OF A NONSTEADY EXTRACTION PROBLEM IN THE CASE 

OF NONLINEARITY OF THE MASS-TRANSFER-COEFFICIENT RELATION 
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and I. Kh. Tsibranska 

UDC 621.039.327 

A numerical solution is presented to an extraction problem with a variable mass- 
transfer coefficient and variable concentration of the external medium and a non- 
linear condition of equilibrium on the surface of the body. 

Well-known analytical solutions [I, 2] to the problem of nonsteady mass transfer during 
extraction were obtained for relatively simple cases, when the mass-transfer coefficient was 
assumed constant over the duration of the process. These solutions often differ significantly 
from the empirical data. In these cases, there is no regular regime [3], which can be at- 
tributed to several factors. Among these factors are avariable mass-transfer coefficient, 
polydispersity [4], the simultaneous extraction of several substances, and kinetic nonequiv- 
alence of the pores [5]. 

The study [2] examined special cases of mass transfer. The study [i] found the region 
of a regular regime with B = 0. The report [6] approximately solved the problem with allow- 
ance for the linear dependence of the mass transfer coefficient on concentration. The in- 
vestigation [7, 8] obtained a solution in the case of a mass-transfer coefficient dependent 
on concentration without approximations limiting the form of the function but with Bi = ~. 
These studies investigated exponential and rational dependences of the mass-transfer coef- 
ficient on concentration. Other particular solutions were obtained for a constant mass 
transfer coefficient and B # 0 [9-14]. 

This article presents a numerical solution of the above problem for three classic forms 
(plate, T = O; cylinder, T = i; sphere, T = 2) with a variable mass-transfer coefficient, 
variable concentration of the external medium, and nonlinear condition of equilibrium on the 
surface of the body. 

Formulated in this way, the problem is described by the equation 

6C~laz x r axarxrDe(C~)~]" (1) 

Equation (1) is  supplemented by the following boundary and i n i t i a l  condi t ions :  

W (~C1 

ac2 - 0 ;  x--:o; ~>0, (2) 
ax 

ac~ (3) 
- -  - W ~ V o ( C ~ )  S--~-~-Tx~; x = R ,  

C 1 .= ~ (C~); x -~ R,  ( 4 )  

C2 : C2o; C I = Clo; T : O. ( 5 )  
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Fig. I. Dependence of ~= and C~ on Fo with 
8 = 0 and 8 # 0. 
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Fig. 2. Dependence of G~ and C, on Fo for T = 0, 
i, and2 with 13 = 0.5. 

~e use the following relations to write Eq. (1) and the boundary and initial conditions in 

C~o - - -  C~o n 

z (e~) = 

dimensionless form: 

(6)  

x 
- -  - - - - %  (7) 

R 

Doo 
F o =  D~____~ (9) 

R ~ 

C2--U~0 = ~I, (i0) 
C1 -- C~o 

N~,,SD* (~) R 3 
(11) 

IV 

After making a substitution of variables, we obtain Eq. (i) and conditions (2)-(5) in the 
following form 

a(Fo)-  qo T aqo _ - ~  j (12) 

c3v~2 1 - 7 ~  j~=o ~ o, (13) 

a~, ~ x ( a j @ l  . (z4) 
a(Fo) ~ i 

We s o lve  system (12) - (14 )  n u m e r i c a l l y  by the  f i n i t e  d i f f e r e n c e s  method, us ing  an im- 
p L i c i t  s e c o n d - o r d e r  approx ima t ion  scheme bo th  f o r  the  e q u a t i o n  and f o r  the  boundary cond i -  
t i o n s .  Due to the nonlinearity~ we obtain the solution by means of iterations [15, 16J, 

We use the solution obtained to study the effect of the form of the mass-transfer-co- 
efficient relation D e = De(C2) on coneentratio~ C~. Following [7, 8], we use two methods of 
expressing this relation: 
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D e =  Deo , (15) 
1 + alC~ 

De = DeoeXp (a.zC2). (16) 

We checked the solution by comparing the results obtained with Eqs. (15) and (16) with the 
results in [17] obtained for the case g = 0, i.e. without allowance for the effect of a 
change in concentration in the surrounding medium. The comparison was done with a value of 
the parameter h = 0.167 and 0.833 (al > 0) and h = 1.25 (al < 0), where h = (i + a:C1p)/(l + 
a~C~o). The results agreed well in both cases. 

During the numerical experiments we studied the effect of the hydraulic modulus and the 
form of the body on the course of the extraction process with a mass-transfer coefficient 
varying according to Eq. (15) and a variable concentration of the external medium. During 
occurrence of the nonsteady process, the hydraulic modulus -- the ratio of the quantity of 
liquid phase to the quantity of solid phase -- has a substantial effect on the degree of ex- 
traction. There should be an increase in the degree of extraction with an increase in the 
hydraulic modulus. This relationship is confirmed by Fig. i, which shows the functions C a = 
f(Fo) and CI = f(Fo) for B~ 0 (B = 0.5~ -3) and ~=~0 (~ = 0.5). 

In the first case, when the hydraulic modulus approaches infinity, the extraction 
process proceeds considerably more rapidly than when the modulus has a finite value. 

The effect of the form of the particles on the extraction rate can be seen from Fig. 2, 
which shows the change in concentration in both cases for three classic forms -- plate, cyl- 
inder, and sphere -- under identical conditions for the process. It follows from the figure 
that extraction takes place most rapidly when the particles are spherical and least rapidly 
when they are in plate form. 

NOTATION 

B, ratio of quantity of extracted substance in the solid phase to quantity of same in 
the liquid phase, kg/m~; CI, concentration of substance in the liquid phase, kg/mS; Bi, Blot 
criterion; ~, time; sec; x, direction of mass transfer, m; T, parameter considering the form 
of the body; De, mass-transfer coefficient, m2/sec; W, quantity of the liquid phase, m3; C=, 
concentration of the substance in the solid phase, kg/m3; N, number of particles; S, surface 
of the particles normal to the direction x, m=; R, characteristic dimension of the particles, 
m; , equilibrium function on the surface of the particles; C2o, C~o, initial concentrations, 
kg/mS; el, internal porosity of the solid, m3/m3;_Fo, Fourier criterion; 9, relative length; 
Deo , mass-transfer coefficient at Ca + 0, kg/m s" C2o, initial mean concentration; De, rela- 
tive mass-transfer coefficient; ~, ~, dimensionless concentrations; D*(~=), dimensionless 
diffusi_on coefficient; a:, as, constants; %, dimensionless mass-transfer complex; h, param- 
eter; Ca, mean concentration in the solid phase, kg/m3; C1p, equilibrium concentration in 
the liquid phase, kg/m s. 
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LIMITS OF APPLICABILITY OF THE BOHM FORMULA 

V. A. Kotel'nikov UDC 533.915.2/06 

A comparison is made between the densities of ion current on spherical and cylindri- 
cal probes calculated by Bohm's approximate formula and on the basis of a rigorous 
numerical solution of Vlasov's system of equations. 

Probe methods of diagnosing plasmas have now found wide application. If the plasma is 
of sufficiently low density, the concentration of charged particles can be calculated from 
the Bohm formula [I] 

Ii (1) 
a e  (2 kTe/m~)I/2S 

The coefficient a = 0.8 for a spherical probe and 0.4 for a cylindrical probe. As was noted 
in [2], Eq. (I) is valid if the mean free path of the particles of the plasma % is much 
greater than the probe dimension r o and if r o is much greater than the thickness of the 
space-charge layer A. Also, the value of T i of the ions must be much less than the electron 
temperature. The potential of the probe ~o must be negative and of sufficient magnitude. 
These conditions reduce to the following system of inequalities: 

~ ro ~ A, (2) 

re>T,, (3) 

e~o/kTi ~ O. (4) 

Conditions (2)-(4) are encountered in practice in measurements in a glow-discharge 
plasma and in low-pressure arcs if the concentration of charged particles ni ~i0 ~~ cm -z. 
The validity of Eq. (i) was checked repeatedly by comparing probe measurements with measure- 
ments obtained by other independent methods. We performed one such comparison using results 
for a molecular plasma flow coming out of a plasmatron. We used a cylindrical probe with its 
axis parallel to the flow axis. The concentration of charged particles in the flow was 
about !0 x= cm -~. Under these conditions, the thickness of the space-charge layer proves to 
be much less than the probe radius. Thus, the end effect can be ignored [3]. By selecting 
a probe with a length much greater than its radius, we also succeeded in establishing condi- 
tions such that the directed velocity had no effect on the ion saturation current. The con- 
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